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Abstract. me Mn-equilibrium critical relaxation of systems in which the order parameter 
couples reversibly 10 C O I E N ~ ~  densities is investigated. The initial stale which may be 
macroscopically prepared by a quench from a t e m p t u r e  T > T, to the critical temperature 
G is characterized by short-range comlations. In the case where the order parameter itself is 
conserved the relaxalion shows universal scaling. If, on the other hand, lhe order parameter is 
mI conserved the scaling is govemed by a new exponent which depends on (he width of the 
initial distribution of lhe conserved fields. However, the response function of the conserved 
fields still shows universal scaling. 

1. Introduction 

The relaxation of a thermodynamic system after a quench from an initial temperature 
TO >> T, to the critical temperaturc T, is govemed by the growth of correlations. Very 
recently we have studied the non-equilibrium critical relaxation of systems in which the 
order parameter couples to a conserved density [I]. Our study was based on model C 
(defined by Halperin er ul [2]) which serves as a suitable description of the critical dynamics 
provided that no reversible mode coupling is present. 

For model A and model C the correlation function C(r ;  f , t ' )  and the Linear response 
function x(r ;  t, t') display universal scaling behaviour [ I ,  3, 41 

(c denotes the equilibrium correlation length) where the scaling functions fc and fx remain 
finite for t' + 0, i.e. for short times f' after the quench the scaling behaviour is govemed 
by the exponent 8. If the initial value M ( 0 )  = MO of the order parameter is non-zero it 
decays at T, according to the scaling law 

M ( t )  M ~ f n ' f ~ ( t R ' f P " " ' ' ~ ~ )  (3) 
with 0' = 8 + (2 - z - q ) / z  and 
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For model A and model C the exponent B has been calculated to second order in e = 4 - d 
(where d is the spatial dimension of the system). 

In this paper we consider the effect of reversible mode coupling on the relaxation. 
Our results apply for example to planar (anti-)ferromagnets (model E [SI), isotropic 
antiferromagnets (model G), and the more general O(n)-symmetric model of Sasv;Iri er 
~l [61. We show that the relaxation of these systems is subject to a strong influence of the 
initial fluctuations of the conserved fields coupling to the order parameter. This influence 
becomes apparent in a non-universal exponent B which depends on the width of the initial 
distribution of the conserved densities. In section 4 we use dynamic field theory [7, 8,9] 
to calculate B to first order in e = 4 - d .  

As an example ofa system with conserved order parameter and reversible mode coupling 
we study in section 5 the isotropic Heisenberg ferromagnet (model J). In this case the initial 
slip exponent proves to be universal, but it is not new since it can be expressed in terms of 
IJ and z. 

2. The model 

Physical systems with continuous symmetries satisfy conservation laws which result from 
Noether's theorem. One of us 191 has introduced a model for the critical dynamics of a 
non-conserved n-component order parameters which transforms according to an irreducible 
representation of a p-parametric internal symmetry gmup. The p infinitesimal generators 
mi are conserved densities and thus belong to the set of slow variables which govem 
the infrared limit of correlation and response functions. The coupling of the conserved 
fields to the order parameter can be described by reversible contributions to the Langevin 
equations 191 
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where { and IJ are Gaussian random forces with zero mean and the correlations 

(&&. t)<p(r', t')) = 2h8@yr - r')S(t - t') 
( q j ( r ,  f)qh(r', t')) = -2Ap8jkA6(r - r')6(t - t ' ) .  

(7) 

(8) 
The Hamiltonian reads 

2 'I 1 
4! 

+ -(gs4) + -m 

where (gs4) is a sum of forth order invariants of the order parameter representation. 
Hereafter we set (gs4) = g ( ~ ' ) ~ ,  i.e. 71 is invariant with respect to O(n).  

The relevant contributions to the antisymmetric mode coupling matrix M(s) are 

Mjo(s) = -Mej(s) = J.f I j f l p B  . (10) 
For simplicity we assume that the coefficients Ij,.p are uniquely determined by the symmetry 
of the system? and the conservation of m. In this case they can be derived from Poisson 
bracket relations (see, e.g., [IO]). 

t The are Clebsch-Gordan mfficients which reduce the direct product represenlation of the order pasameter 
representation antisymmevically to the adjoint representation. 
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An equivalent formulation for the dynamics is given by the stochastic functional [9]  

3[?, s; f i ,  m ]  = dt ddr (S[a,s + A(s - A)s + (A/3!)(gs3)] - AS2 
L O S  

+ f i (&m - @Am) - Ap(VriZ)* - Afl?(ml)s - ( V s ) ( V f i l ) s l ] .  (1  1) 

The only second order invariant of an irreducible orthogonal representation is s2 = se& 
where I and f i  are MartinSiggia-Rose response fields [ 1 I]. 

By an appropriate normalization of the Ii,=p we therefore achieve 

I i ,oyli.py = p&tp Ii,epIj,efi = n&j . (12) 

The model defined above includes the O(n)-symmetric model of Sasv6ri et a1 [6]. The 
special case n = p = 3 corresponds to the isotropic antiferromagnet (model G),  and n = 2, 
p = 1 gives the planar (anti-) ferromagnet (model E). 

The Langevin equations (5). (6) and the dynamic functional (1  1) describe the equilibrium 
critical dynamics of the model. The nonequilibrium initial state with short-range 
correlations corresponds to the distribution [ I ]  

?'[so, mol o( exp(-W'[so, mol) (13) 

where sdr)  = s(r ,  0). m d r )  = m ( r ,  0), and 

'H"'[so,mo] = ddr -so + -mo . J [; 2L0 l1 

Since si' is an irrelevant variable [3] we may set TO = 00 and use the sharp initial condition 
so@) = 0 for the order parameter field. 

In order to obtain non-equilibrium correlation and response functions we have to average 
products of fields with respect to both thermal noise and initial conditions, i.e. integrals of 
the form . 
{ s ( r , t ) . . . )  = 

have to be calculated. The linear response to an external field h conjugate to the order 
parameter is given by 

Dt iS ,s ;  i ~ , m l s ( r , t ) . . . e x p ( - ~ [ S , s ; r i i , m ~  - W ' [ s o , m o l )  J 

with the composite response field 

In section 4 we will also consider the response function for the conserved densities 

where h, is an external field conjugate to m and 
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3. Renormalization 

We proceed along the lines taken in the analysis of the relaxation behaviour of model C. 
Methods of renormalized field theory will be used to obtain the scaling behaviour of non- 
equilibrium response and correlation functions. 

The propagator and the correlator of the 'free' Gaussian model defined by g = f = 0 
are given by 

(19) 
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G,(t ,  t') = exp(-A(r + q2)(t - t')) for t z r' 
cq(r, r') = - t') + ci)(t, t') (20) 

with the equilibrium correlator 

(21) 
1 ciq'(t - r ' )  - exp(-h(r + - t'l) 

r + q 2  

and a non-equilibrium ('initis) part 

Hereafter we set ro = 00, i.e. we impose Dirichlet initial conditions for the order parameter 
field s. The corresponding functions for the conserved fields are 

(23) 
(24) 

G,,,.q(t - 1') = exp(-Apq2(t - t')) for t > t' 
~ , , , , ~ ( t ,  r ' )  = ~:;"ct - t') + c&(t. t') 

where 

A perturbative calculation of Green functions (treating the coupling coefficients f and 
g as perturbations) leads to integrals which are ultravioletdivergent at the upper critical 
dimension dc = 4. We render these integrals finite by analytic continuation in d (dimensional 
regularization) and absorb the remaining poles at E = 0 into reparametrizations of coupling 
coefficients and fields, i.e. we apply the minimal renormalization prescription. 

The renormalizations necessary to render the equilibrium theory finite are [9] 

s 4 B = zys 
m -+ rh = zAlZm Ij-2 -+ = z;%i 
r -+ t = Z;'z,t 

R -+ t = z; zug 
a. -+ i = (Z8/Zj)'/2ZAa. 

s + i = zys 

f -+ P = (zE/zs)~/zz"f 
p -+ #a = (Zj/Z,)~~2ZpZmP 

2 

G,g = up.' G ,  f 2  =v2f i ' .  

The geometrical factor G, = r(i+ ~/2)/(4n)~/* has been introduced for convenience, 
and f i  is an external momentum scale. The renormalization factors 2, and 2, are the same 
as in model A. As a result of the purely reversible coupling of the conserved density to 
the order parameter the identity Z,,, = 1 holds in every order of the perturbation theory. 
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Furthermore, a dissipation fluctuation theorem [9] yields ZAZ,  = 1. The remaining Z 
factors are given by 

(27) zi = I + O(two-loop) 

The nonequilibrium part of the correlator (20) generates additional divergences which 

(30) 

To obtain the new Z factor ZO we split the Green function &:.,(I) = (J(t)&) into two parts 

have to be subtracted by a further renormalization of the initial field SO(T) = i(+, 0) 

20 + s"0 = (ZOZ,)"*iO. 

Figure 1. Contributions to rl.o(q. t ) l .  alone loop order. The wavy lines are m l a f o r s  and 
propagators of (he canserved fields. I ~ t l a l  pans of carrelators are indicated by the letter W. 
The hatched area represents lk 'lime surfad f = 0. 

Q! . 

where = (J(t)$f')) is a one-particle-reducible equilibrium Green function, and 
pl,o(q,t)l;D, contains additional contributions to &:,l(q, I) which result from the broken 
translational invariance with respect to time [I]. The Feynman graphs contributing to 
pl.o(q,  t)l;sl at one loop order are shown in figure 1. 

We find (for r = 0) that 

+ 0(tw0-l00p). (32) 

To obtain a well defined renormalized Green function CA,, = ( 2 ~ , 2 j Z , ) - ' ~ ~ ~ ~ , ~  we have 
to render the Laplace transform 
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finite for E + 0. This yields 
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2pu2 2puz 
U--- + o(nvo-loop). (34) 

n + 2  Z o = l + -  
+ p )  3€ €(I + p )  

The parameter CO requires no renormalization since 

1 ddr {rR(r, I)R(O, t')) = co for t ,  t' 0 (35) 

and r f ~  = m. Equation (35) follows from the conservation of m [l]. 

4. scaling 

In this section we study the scaling behaviour of Green functions 

(36) 

Renormalized Green functions are related to the 

i - f i  N - 8  G : . , ; ~ , ~  = {[sol [SI [SI rm1 ~ 1 ' " )  

with i insertions of the field So. 
coresponding bare functions by 

We exploit the pindependence of the bare Green functions to derive the renormalization 
group equation (ROE) 

(38) 

for the renormalized functions. Here BU, = f i$low (for w = U, U, p )  and ye = p ~ l , ,  In Z. 
(for OL = s, 5, A. p ,  0 )  are Wilson functions. where pd10 means a derivative at fixed bare 
parameters. The new Wilson function connected with %e non-equilibrium initial conditions 
follows from (34) 

i 
[pa, + FAaA + Krar +mu + B A  +ppap + ,(yo + n) + 

= O  

d 

+ 2u + 2puz 1 + V) + O(two-looP). yo = -- 
3 (39) 

In a region n c 4 p  + O(E) in the (d,  n, p)-space the dynamic scaling fixed point 

uf = ~ / ( 4 p  - n)  + o(E*) p. = n / ( 4 p  - n )  + O ( E )  (40) 
is stable [9]. Directly at this fixed point the Green functions display the scaling behaviour 

G;,wfi.M(b? 11; 7 ;  AV /I) 

- - ~ ~ d - ~ t ~ ~ N / Z + i d t 2 + i ~ i ~ t ~ ~ l ~ ~ ~ / Z t d i M t 8 ~ 1 ~  
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Due to the marginality of the parameter co the exponent qo is not universal but depends on 
the width of the initial distribution of the conserved densities. 

The short-time scaling behaviour of correlation and response functions given in the 
introduction can be derived from the short time expansion [3] 

which is valid after insertion into averages. An insertion of the time derivative .Eo = 
a,sl,=o = 2 A 6  (for ro =CO) requires the renormalization 

so 3 io = (zoz,)'~*z*~o. (44) 
The renormalization group equation 

[@a, + u a ,  + ,%a, + ~,a, +&,a,, - yA - ; V ~ I O ( ~ ;  U, U ,  P ;  A;P) = o (45) 

for the coefficient u(r) follows from the different renormalizations of s(t )  and io. 
Equation (45) together with dimensional analysis gives at the fixed p in t  (40) the power 
law 

- t(/12At)(xA+?O/2'/z (46) 

(47) 

The behaviour of Z ( t )  can be found in a similar way. For time arguments I z 0 
we can adopt the renormalization of 4'"(t) from the equilibrium theory. and a dissipation 
fluctuation theorem [9] yields 

(4) 

The response operator &) fixed to t = 0 requires a different renormalization because 
the field SO included in @ generates additional divergences. Furthermore, the second 
contribution to @Is' in (16) is suppressed for t = 0 due to the sharp Dirichlet initial condition 
SO = 0, and we get 

4;) -+ 4;) = i f o  = ZA(ZSZ0)'/~&~. (49) 

The RGE for the coefficient Z(t )  which follows from (48) and (49) gives at the fixed p i n t  

*(I) N ($AI)uh+J!o/2)/Z. (50) 

with 
x A = y , * = Z E + O ( E  I 2 2. 

# I S 1  -+ $SI = z-/2p~ 

We can now exploit the results from the short time expansion to obtain the scaling 
behaviour of the correlation function C ( r ;  t ,  t') and the response function xs(r: t ,  t') for 
I' + 0. As long as t ,  t' > 0 these functions satisfy the same scaling laws as in equilibrium. 
According to equations (46, 50) they vanish for I' -+ 0 like powers oft'. and we find 
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with 
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e = - ( I / z ) ( x A  + i q d .  (52) 

The functions g&, y)  and gx(x ,  y) are the (finite) limits of f&, y ,  z) and f r ( x ,  y,  z )  in 
(1.2) for z + 0. 

So far we have only considered the response of the order parameter to a conjugate 
external field. In order to study the linear response to an external field couplin to 
the conserved densities we have to renormalize the composite response operator @$ = 

For f > 0 a dissipation fluctuation theorem [9] yields $'"'I = $'"'I, i.e. $"r remains 

(53) 

-A@Atiij + f I j . & d p )  . 

unrenormalized, whereas for f = 0 

4:) --+ 4:' = -.%pA& = ZIZp&'. 

,$")(f) = cm(f)$p + . . . 
A short-time expansion 

for t + 0 

analogous to (43) can be used to derive the scaling form 

(54) 

for the m-response function, where the scaling function f p l  is finite for f' + 0, and 

is an universal exponent. 
We conclude this section with a remark on the weak scaling fixed p i n t  

which is stable for n > 4p + O(E).  In the limit p .  + 03 the exponent r)o becomes 
independent of the initial correlation CO and we have 

qo = --€ n + 2  + - 2p6 +0(2). 
n + 8  4 p + n  

In order to show that this universality holds to all orders in E one can integrate the fields 
6 and m out from the statistical weight exp(-3 - X"') and then perform the limit 
p --+ 00 at fixed w = ( f 2 / p ) .  In this limit all contributions corresponding to the non- 
equilibrium part (26) of the m-comlator vanish, and we obtain a new effective weight 
which is independent of CO. 

5. Conserved order parameter 

As has already been pointed out in [3], time naively scales as t - (Ap4)-' if the order 
parameter itself is a conserved density. Therefore the degree of divergence of integrals with 
broken translational invariance with respect to time is reduced by four, and no additional 
renormalization of the initial resp9nse field $0 is necessary. For this reason the exponent 
qo is zero. Systems with conserved order parameter nevertheless show a non-trivial short 
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time scaling behaviour govemed by an exponent 6 c 0 if reversible drift terms are present 
in the Langevin equations. In this case equation (2) describes the growth of the reversible 
part of the response (which is absent at the beginning of the relaxation) as the system tends 
to equilibrium. 

To give an example we consider the isotropic Heisenberg ferromagnet (model J [51) 
with the dynamic functional 

J[S, s; fi, ml = dt ddr [sacs - h(VB)' C S  
+ h(VSs)[V(rs - AS + (g/3!)s3)a + f€e,+,VSpSyll . (59) 

The linear response to an external field is given by 

x(r - r'; I ,  t') = (s(r, t)@(T', t ' ) )  (60) 

with 

@a = -b(AS, + f ~ ~ p ~ S p s ~ ) .  

response operator @ ( t )  depends on its time argument. For t 
as in equilibrium while 

(61) 

Now we proceed in the same way as in section 4. The renormalization of the composite 
0 we have @ -+ 4 = Z:'*@ 

The different renormalizations of @ and @l,=o imply different anomalous dimensions. A 
short distance expansion yields the scaling behaviour (2) with the exponent 

(63)  
4 - q - z - -  6 - d - q  e = -  - 

Z d + 2 - q '  

6. Conclusions 

Motivated by earlier studies of the non-equilibrium critical relaxation of models A and C 
which is govemed by new, universal exponents we have considered the effect of reversible 
mode coupling on the short time scaling behaviour. 

We have shown that (short-range) initial correlations of conserved densities coupling 
reversibly to the order parameter are not irrelevant. The width of the initial distribution 
of the conserved densities corresponds to a marginal variable which at the strong scaling 
fixed point enters into the value of the initial slip exponent 0, i.e. 6 is not universal. For 
the response function of the conserved fields a short time scaling form with an universal 
exponent has been found. 

Finally, it has been shown that the relaxation of the isotropic Heisenberg femmagnet 
displays a short time scaling behaviour which is governed by a non-trivial initial slip 
exponent We have expressed this exponent in terms of q and z. 

An experimental test of these results by a quench of a real system f" a high 
temperature to Tc is difficult since the temperature has to be stabilized very rapidly to 
render an observation of the initial stage of the relaxation possible. Therefore it would be 
worthwhile to look for the non-universal short time scaling behaviour in simulations [12]. 
However, there is no work known to the authors where the dynamics of a model with 
reversible mode coupling is studied by Monte Carlo techniques, 
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